
© 2010 PREPARED 

The European Commission is funding the Collaborative project ‘PREPARED Enabling Change’ 

(PREPARED, project number 244232) within the context of the Seventh Framework Programme 

'Environment' .All rights reserved. No part of this book may be reproduced, stored in a database or 

retrieval system, or published, in any form or in any way, electronically, mechanically, by print, 

photoprint, microfilm or any other means without prior written permission from the publisher 

 

 
 
  

Calibration, 
Uncertainty 
Quantification and 
Sensitivity Analysis 
Software Manual  
 

 





 

COLOPHON 
 

 

Title 

Calibration, Uncertainty Quantification and Sensitivity Analysis: Software Manual  
 
 
Report number 
PREPARED 2014.048 

 
Deliverable number 
D3.6.3  
 

Author(s) 

Hutton, C.J. (UNEXE), Thompson, K. (UNEXE),  
 
 
Quality Assurance 
By L.S.Vamvakeridou-Lyroudia (UNEXE) 

 

Document history 

Version Team member Status Date update Comments 

1 Hutton, C.J. Draft 30/12/2012  

2 Hutton, C.J. Draft 07/02/2013  

3 Thompson, K. Draft 07/5/2013  

4 Hutton, C.J. Draft 07/5/2013  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This report is: 
PU = Public 



 

Calibration, Uncertainty Quantification and Sensitivity Analysis (PREPARED 2014.048) 

© PREPARED - 4 -                                                          15 april 2010 

 

 
Contents 

Contents 4 

1 Disclaimer 6 

2 Introduction 7 

2.1 Introduction to PREPARED and Work Package 3.6 7 

2.2 Software Manual Structure 8 

3 Model Calibration: From Theory to Application 9 

3.1 Probability Theory 9 

3.2 Running a model calibration 9 

3.3 Software Structure 10 

4 Example Applications 13  

4.1 Running a Formal Bayesian Analysis 13 

4.2 Running an Informal Bayesian Analysis 16 

5 Toolbox Classes: Member Function and Data Member Descriptions 19  

5.1 modelCalibration class 20 
5.1.1 Data Members 20 
5.1.2 Member Functions 20 

5.2 mcSampling class 22 
5.2.1 Data Members 22 
5.2.2 Member functions 22 

5.3 InformalLikelihoods class 24 
5.3.1 Data Members 24 
5.3.2 Member Functions 24 

5.4 informalBayesianAnalysis class 26 
5.4.1 Data Members 26 
5.4.2 Member Functions 27 

5.5 formalLikelihoods class 30 
5.5.1 Data Members 30 
5.5.2 Member Functions 30 

5.6 formalBayesianAnalysis class 33 
5.6.1 Data Members 33 
5.6.2 Member Functions 34 

5.7 ParameterAnalysis class 37 
5.7.1 Data Members 37 
5.7.2 Member Functions 37 

5.8 PredictionAnalysis class 39 
5.8.1 Data Members 39 
5.8.2 Member Functions 39 

5.9 genericFunctions class 41 



 

Calibration, Uncertainty Quantification and Sensitivity Analysis (PREPARED 2014.048) 

© PREPARED - 5 -                                                          15 april 2010 

 

5.9.1 Member Functions 41 

5.10 Additional functionality in all classes 48 

6 Software Installation 49  

6.1 Example installation using the import library 49 

6.2 Example installation by explicit methods 50 

7 References 51  
 



 

Calibration, Uncertainty Quantification and Sensitivity Analysis (PREPARED 2014.048) 

© PREPARED - 6 -                                                          15 april 2010 

 

1 Disclaimer 

The computer software presented in this manual has been developed with appropriate effort 

made to ensure the functions provide a faithful representation of the algorithms they were 

designed to execute and therefore represent. Furthermore, the successful application of 

methods for model calibration, uncertainty quantification and sensitivity analysis presented 

herein is conditional on a number of assumptions that, if not satisfied, may compromise the 

validity of their application. The author(s), therefore, assume no responsibility or liability for 

any results obtained, for any use made of the results, and for any litigation or damages that 

result from the use of the software. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Calibration, Uncertainty Quantification and Sensitivity Analysis (PREPARED 2014.048) 

© PREPARED - 7 -                                                          15 april 2010 

 

2 Introduction 

2.1 Introduction to PREPARED and Work Package 3.6 

 
The European Commission funded project, PREPARED Enabling change aims to respond to 

the risks posed by climate change, and show that the water supply and sanitation systems of 

cities and their catchments can adapt and be resilient to the challenges of climate change. 

PREPARED aims to build the resilience of Urban Water Systems (UWS) in two primary 

ways:  

 

 First, through optimisation of existing water supply and sanitation systems, to 

postpone investments in new infrastructure until investment risks are lower as more 

knowledge is available. 

 Second, in the case where optimisation is not sufficient, PREPARED will provide 

guidance and produce frameworks to aid utilities in building more resilient water 

supply and sanitation systems 

 

Building system resilience through optimisation of water supply and sanitation requires the 

identification and reduction of risk associated with UWS management. Numerical system 

models are widely applied to inform such management decisions, however such models are 

inherently complex, and contain multiple sources of system uncertainty that may 

compromise the quality of model predictions, and subsequently derived control decisions.  

 

An essential and innovative aspect of PREPARED is the development of a software toolbox 

of methods to quantify and reduce system uncertainty through offline calibration and online 

data assimilation, to support real time modelling (Work Package 3.6). The toolbox is 

required to increase the technological capacity of existing water supply and sanitation 

systems to deal with uncertain changes to system inputs (e.g. rainfall, dry weather flow and 

water demand) resulting from climatic change. Such demands call for an integrated real 

time control strategy, supported by monitoring and modelling approaches, to provide 

decision support in the face of inherent system uncertainty.  

 

Work package 3.6 has investigated methodologies for uncertainty quantification and 

reduction in UWS models. Existing methods for uncertainty quantification and data 

assimilation have been reviewed, and their suitability for application in UWS models 

evaluated (Hutton et al., 2012).  

 

The subsequently developed software, alongside the software manual(s), fulfils the 

requirements of PREPARED Deliverable 3.6.3, and is presented in two toolboxes: First, a 

toolbox of methods for offline calibration, uncertainty quantification and sensitivity analysis; 

Second, an online toolbox for real-time data assimilation and error correction. 

 



 

Calibration, Uncertainty Quantification and Sensitivity Analysis (PREPARED 2014.048) 

© PREPARED - 8 -                                                          15 april 2010 

 

2.2 Software Manual Structure 

 
In section 3, some general theory for the probabilistic Bayesian approach to calibration is 

presented, alongside an overview of the calibration toolbox, and a general description of 

running a model calibration. Section 4 provides some code examples of how to use the 

toolbox to run a model calibration, and Section 5 provides a more detailed description of 

each class in the toolbox, its data members and member functions. Finally, section 6 

provides guidance on software installation. 

 



 

Calibration, Uncertainty Quantification and Sensitivity Analysis (PREPARED 2014.048) 

© PREPARED - 9 -                                                          15 april 2010 

 

3 Model Calibration: From Theory to Application 

3.1 Probability Theory  

 
The software presented in this manual is designed for the calibration of numerical models 

within a probabilistic framework. In order to account for the multiple sources of system 

uncertainty that affect the accuracy of parameter calibration and model prediction, rather 

than calibrating a model to identify the Maximum Likelihood Estimate (MLE) of each model 

parameter, uncertainty in model parameters and predictions is quantified in the form of 

posterior (e.g. post calibration) Probability Density Functions (PDFs). The posterior 

uncertainty in model parameters    , given a vector of observations used for model 

calibration     is obtained via Bayes’ equation: 

 

   |      |                                                                                                                                                    
 

The second right hand term is the prior distribution of model parameters, which is typically 

chosen as a uniform distribution, the least informative distribution within a probabilistic 

framework. The first right hand term is the likelihood function. Solving Bayes’ equation 

analytically is typically intractable, and therefore some form of numerical sampling is 

required. Alongside the likelihood function, the way in which the posterior distribution is 

sampled may affect the thoroughness, and therefore validity of the model calibration. 

Within the probabilistic Bayesian framework, two approaches are provided in the toolbox 

for model calibration, which differ primarily by the Likelihood function chosen to derive 

posterior probabilistic information: Formal Bayesian Analysis and Informal Bayesian 

Analysis (See Hutton et al., (2012) and references therein for a discussion of these alternative 

methodologies.). 

 

3.2 Running a model calibration 

 

Regardless of the likelihood function chosen and the sampling procedure employed, both 

methods conform to a generic approach for first Parameter Sampling and second 

Uncertainty Analysis: 

 

//Sampling 

 
Define Prior Parameter Distributions (PDDs); 

 

count = 0; 

 

Do { 

 Sample Parameter Set from prior Distributions; 

 

 Run Model using the Parameter Set to Obtain Predictions; 

 



 

Calibration, Uncertainty Quantification and Sensitivity Analysis (PREPARED 2014.048) 

© PREPARED - 10 -                                                          15 april 2010 

 

Calculate Parameter Set Likelihood by Comparing Predictions to 

Observations; 

 

 Store Set of Parameters, Predictions and Likelihood; 

 

 count += 1; 

 

} while(count < totalRuns); 

 

//Uncertainty Analysis 

 

Calculate Probabilities from Likelihoods; 

 

Calculate Parameter Probability Density Functions; 

 

Calculate Sensitivity Statistics; 

 

Calculate Prediction Probability Density Functions; 

 

Calculate Confidence and/or Prediction Intervals; 

 

Output results to file; 

 

3.3 Software Structure 

 

The software in the calibration toolbox has been written in the programming language C++ 

as a group of classes, each with specific functions for Parameter Sampling and Uncertainty 

Analysis (Figure 1). The classes and contained functions have been separated such that 

alternative, user specified functions may be employed in place of those contained within the 

toolbox, whilst still enabling access to the functionality of other classes. 

 

The centre of the toolbox in the class modelCalibration, which contains data members for 

storing the calibration results from Parameter Sampling for subsequent Uncertainty 

Analysis. The user specifies before calibration the number of (typically best performing) 

parameter sets, or samples to retain for posterior analysis (tSamples). For each set, the 

parameters, predictions and likelihood are stored in modelCalibration. These arrays are 

then passed as function arguments as required for uncertainty analysis. Underlying much of 

the toolbox is the genericFunctions class that contains algorithms commonly used in 

many of the other classes. 

 
Parameter Sampling 
 
Parameter Sampling first requires a sample from the prior distributions for each model 

parameter, which in the mcSampling class, are drawn randomly from user specified 

uniform priors for each parameter. Following sampling, the model in question is run for a 

time series of driving conditions using the sampled parameter set to derive a vector of 

model predictions comparable to the user supplied vector of observations. Both formal 



 

Calibration, Uncertainty Quantification and Sensitivity Analysis (PREPARED 2014.048) 

© PREPARED - 11 -                                                          15 april 2010 

 

Bayesian and Informal Bayesian Likelihoods are provided in the formalLikelihoods and 

informalLikelihoods classes respectively, to derive posterior likelihoods for each 

parameter set, and associated vector of model predictions. 

 

 

 

 

 
 

Figure 1. Overview of the software and class structure within the Bayesian Framework. The 

software is generally split into classes concerned with sampling and following sampling, 

uncertainty analysis. Two routes are available for sampling: formal Bayesian approach, or an 

informal Bayesian approach. 

 

 

 

   |   

 
 
 
 
 

     

 
 
 

 

modelCalibration.h 

formalBayesAnalysis.h 

formalLikelihoods.h mcSampling.h 

informalLikelihoods.h 

informalBayesAnalysis.h 

genericFunctions.h 

PARAMETER SAMPLING 

   |   

 

POSTERIOR 
 
 
 

UNCERTAINTY ANALYSIS 

parameterAnalysis.h 

predictionAnalysis.h 



 

Calibration, Uncertainty Quantification and Sensitivity Analysis (PREPARED 2014.048) 

© PREPARED - 12 -                                                          15 april 2010 

 

Uncertainty Analysis 

 
Following Parameter Sampling, the parameter sets and associated predictive data are then 

passed to either formalBayesAnalysis or informalBayesAnalysis depending on the 

likelihood function uses in Parameter Sampling. Within the above functions 

parameterAnalysis is called upon to calculate posterior parameter PDFs and run the 

parameter sensitivity analysis, whilst the predictionAnalysis class is called to calculate 

the posterior prediction PDFs for each observation, and, where required, confidence 

intervals and prediction intervals. 

 



 

Calibration, Uncertainty Quantification and Sensitivity Analysis (PREPARED 2014.048) 

© PREPARED - 13 -                                                          15 april 2010 

 

4 Example Applications 

The application of the toolkit to run both a formal and informal Bayesian analysis is 

demonstrated for a simple, linear model. The example code is available with this manual, 

which may be used as a starting point for users to adapt the toolkit to their own 

applications.  The observations have been derived by perturbing model predictions with a 

known noise distribution, which also serves to demonstrate the ability of the formal 

Bayesian analysis to infer the unknown error structure parameters, alongside those of the 

actual model.  

 

4.1 Running a Formal Bayesian Analysis 

 
The application of the toolkit to calibrate a linear model using a formal Bayesian analysis is 

demonstrated in the code snippets from Figure 2 through to Figure 5. which is a general 

structure for Monte Carlo calibration that may be applied to most models. On lines 6-11 the 

relevant header files for the classes to be called during calibration are specified (note: the 

genericFunctions class is used here to set up and perturb the linear model predictions to 

deomstrate calibration, and does not need to be delcared explicitly otherwise). The linear 

model function and function to generate data in order to calibrate the linear model are 

declared on line 12 and line 16, respectively. Two vectors are then declared on lines 18 and 

19 to store the vector of observations used in calibration that need to be supplied by the user, 

and the associated model predictions, each time the model is run.  

 

 
Figure 2. First C++ code snippet showing the example application of linear model 
calibration using the formal Bayesian Analysis 
 
 
Figure 3 shows the start of the main function, where the model and parameters are set up 

prior to sampling. The number of observations, parameters, and retained parameter sets for 

posterior analysis, are declared on lines 28 to 30. On line 31 the generateData() function is 

called, which generates 1000 observations from a linear model with an intercept of 0.6 and a 



 

Calibration, Uncertainty Quantification and Sensitivity Analysis (PREPARED 2014.048) 

© PREPARED - 14 -                                                          15 april 2010 

 

gradient of 0.5. The third parameter passed is the standard deviation of a Gaussian noise, 

which is added to the linear model predictions to generate “observations”.  

 

Lines 34 to 38 specify the prior uniform parameter distributions for the three parameters that 

will be inferred during calibration: the intercept (a) and the gradient (b), which are the 

model parameters, and the third parameter, which is the standard deviation of the Gaussian 

likelihood function used in calibration. Finally, objects of the relevant classes are then 

created from lines 41 to 57.  This is done by declaring a pointer to the desired class type and 

calling the appropriate factory function to assign a value to this pointer. The factory function 

creates an instance of the class in memory and returns a valid pointer to that class. Class 

members may now be accessed through the class pointer. Three of these classes have to be 

initialised: on line 43 the modelCalibration::initialise() function is  initialised to 

create storage for the calibration results; formalLikelihood::initialise() passes the 

observations to the likelihood function; and mcSampling::initialise() passes the prior 

parameter ranges for parameter sampling. 

 

 
 
Figure 3. Second C++ code snippet showing the example application of linear model 
calibration using the formal Bayesian Analysis: set up prior to parameter sampling. 
 
 



 

Calibration, Uncertainty Quantification and Sensitivity Analysis (PREPARED 2014.048) 

© PREPARED - 15 -                                                          15 april 2010 

 

 
Figure 4. Third C++ code snippet showing the example application of linear model 
calibration using the formal Bayesian Analysis: Parameter Sampling. 
 

Figure 4 shows the main parameter sampling loop. On line 67 a sample is drawn from the 

uniform priors for each model parameter. On lines 70 to 72 the linear model is run by 

passing the parameters from mcSampling object Psamp, which are then stored in the array 

predictions. On lines 75 to 78 the formal likelihood is calculated associated with the model 

predictions and parameter set. First, on line 76 the standard deviation is set for each 

observation, using setStd() of the Plike object. The standard deviation, sampled as a 

parameter, is passed to the function, which may be multiplied by each observation to set an 

observation specific standard deviation, and therefore account for heteroscedastic errors. As 

the final argument is set to zero in the function, this does not occur here.  The negative log 

likelihood for the sample is calculated on line 78, and on line 81, the result alongside the 

sample parameters and predictions are passed to addSample() in the Pcal object. This 

function determines whether the sample likelihood is large enough to be retained as one of 

the retainedParameterSets.  

 

 

 
Figure 5. Fourth C++ code snippet showing the example application of linear model 
calibration using the formal Bayesian Analysis: Uncertainty Analysis 



 

Calibration, Uncertainty Quantification and Sensitivity Analysis (PREPARED 2014.048) 

© PREPARED - 16 -                                                          15 april 2010 

 

 
Figure 5 shows the final stage in calibration, uncertainty analysis. First, on line 88, the 

negative log likelihoods are converted to normalised probabilities. Then, on lines 91-92, the 

formal Bayesian analysis object is initialised, by passing the calibration results, observations, 

and required confidence interval. On line 95 the uncertainty analysis is run. The first 

argument in Pbayes->runAnalysis() is a function that samples from the chosen error 

model in order to calculate the prediction intervals; the second argument is the number of 

parameters this function takes, which in this case is one, the Standard Deviation of the 

Gaussian error model; and the final argument is the number of samples taken from this 

distribution in order to generate the prediction intervals. The function has been written as 

such, so that users can employ their own error models during parameter sampling, but also 

still make use of the formalBayesianAnalysis() by passing a function that samples from 

their chosen distribution.  

 

Finally, lines 98 to 104 write out the results of the calibration to file, and lines 108 to 111 

release the allocated memory by calling the destroy() function of each class that was created. 

This should be done whenever a class is no longer needed. 

 

4.2 Running an Informal Bayesian Analysis 

 
Running an informal Bayesian analysis proceeds in much the same way as the formal 

Bayesian analysis presented in section 4.1.  

 

 
Figure 6. First C++ code snippet showing the example application of linear model 
calibration using the informal Bayesian Analysis. 
 
 
The only difference between the formal Bayesian approach in Figure 7 is that here, 
initialiseNSE() is run to initialise the informal likelihood function, and the 
informalBayesianAnalysis() function is initialised. 
 



 

Calibration, Uncertainty Quantification and Sensitivity Analysis (PREPARED 2014.048) 

© PREPARED - 17 -                                                          15 april 2010 

 

 
Figure 7. Second C++ code snippet showing the example application of linear model 
calibration using the informal Bayesian Analysis. 
 

During parameter sampling (Figure 8) the informal likelihood is calculated on lines 70- 71. 

 

 

 
Figure 8. Third C++ code snippet showing the example application of linear model 
calibration using the informal Bayesian Analysis. 
 

The principal difference between the practical coding of the formal and informal Bayesian 

approaches for calibration comes in posterior analysis (Figure 9), where the behavioural 

thresholds in the informal Bayesian analysis need to be specified by the user (lines 83 to 89) 

and then passed to the runAnalysis() function of the informalBayesianAnalysis class 

pointed by PIbayes. 

 



 

Calibration, Uncertainty Quantification and Sensitivity Analysis (PREPARED 2014.048) 

© PREPARED - 18 -                                                          15 april 2010 

 

 
Figure 9. Running the analysis. 



 

Calibration, Uncertainty Quantification and Sensitivity Analysis (PREPARED 2014.048) 

© PREPARED - 19 -                                                          15 april 2010 

 

5 Toolbox Classes: Member Function and Data 
Member Descriptions 

This section provides more detailed information regarding each Class’s functionality. Many 

class functions do not need to be called explicitly to run a full calibration by the user, as they 

are utilised already within other classes. For example, the genericFunctions class is used by a 

number of other classes, and contains some algorithms routinely called in both Formal and 

Informal Bayesian analysis. However, a more thorough class description is provided to 

facilitate extension and development of the methods provided.   

 

For most classes, information is passed by pointer or by reference within each function call. 

In addition, the data members of most classes are created in an initialise() function. The 

arguments for such functions are the fully capitalised names of specific data members. 

 

In the following description, where data members are arrays and classes, the integer 

parameters used to dimension these arrays are shown in square brackets. This is to help 

prevent errors when using an accessing array values, and so users can access individual 

results, independently of the provided “output to file” functions. The abstract interface for 

these classes is defined in “calibrationToolbox.h”. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Calibration, Uncertainty Quantification and Sensitivity Analysis (PREPARED 2014.048) 

© PREPARED - 20 -                                                          15 april 2010 

 

5.1 modelCalibration class 

 
modelCalibration is the central point of the calibration toolbox, the data members of which 
store the model calibration results for subsequent posterior analysis. 
 

5.1.1 Data Members 

 
 
int tPar: total number of parameters in calibration  
 
int tObs: total number of observations used in calibration  
 
int tSamples: total number of samples retained from sampling for posterior analysis  
 
double **par [tPar][tSamples]: store for parameter sets of each sample 
 
 
double **pred[tPred][tSamples]: store for the predictions made by each parameter set 
(sample) 
 
double *like[tSamples]: store for the likelihood associated with each sample. 
 

5.1.2 Member Functions 

 

initialise 

 
void initialise(int TPAR, int TOBS, int TSAMPLES); 
 
 
Description: initialises the modelCalibration class and storage arrays for sampling. 

 

Arguments: 

 
int TPAR: input to tPar 
 
int TOBS: input to tObs 
 
int TSAMPLES: input to tSamples 
 
 

addSample 

 
void addSample(double likelihood, double * parameters, double 
*predictions); 
 
 



 

Calibration, Uncertainty Quantification and Sensitivity Analysis (PREPARED 2014.048) 

© PREPARED - 21 -                                                          15 april 2010 

 

 
Description: Compares the likelihood of the sampled parameter set with those in storage to 

determine whether to retain the parameter set. Note: the function works based on the 

assumption that the higher the likelihood, the better the simulation. This is valid for most 

informal likelihoods, and formal negative log-likelihoods. 

 

Arguments: 

 
double likelihood: the Likelihood of the parameter set. 
 
double * parameters [tPar]: vector storing the parameter set. 
 
double *predictions [tObs]: vector storing predictions associated with the parameter 
set. 
 
 
 

return[Data Member] 

 
double* returnLike();  //returns like 
 
int returnSamp();   //returns tSamples 
 
double** returnPar();  //returns Par 
 
int returnTpar ();  //returns Tpar 
 
double** returnPred();  //returns Pred 
 
int returnTobs();   //returns tObs 
 
 
 
Description:  A family of functions to return data members or in some cases pointers to data 

members of this class to the function caller. 

 

Arguments: 

 
None. 
 

  

 
 
 
 
 
 



 

Calibration, Uncertainty Quantification and Sensitivity Analysis (PREPARED 2014.048) 

© PREPARED - 22 -                                                          15 april 2010 

 

 

5.2 mcSampling class 

 
mcSampling provides functions for running a Monte Carlo – or random sampling – 
procedure from specified uniform prior distributions, for model calibration. 
 

5.2.1 Data Members 

 
int tPar: number of model parameters to calibrate. 
 
double *parMax [tPar]: vector of maximum values for the uniform prior distributions 
for each model parameter.  
 
double *parMin [tPar]: vector of minimum values for the uniform prior distributions 
for each model parameter.  
 
double *par [tPar]: vector storing the most recently sampled model parameter set  
 

5.2.2 Member functions 

 

initialise 

 
void initialise(int TPAR, double *PARMIN, double *PARMAX); 

 
Description: initialises an mcSampling object for calibration 

 

Arguments: 

 

int TPAR: input to int tPar 

 

double *PARMIN: input to double *parMin 

 

double *PARMAX: input to double *parMAX 

 

sample 

 
void sample(); 

 
Description: samples from the uniform priors of each model parameter, storing the results 

in *par. 

 



 

Calibration, Uncertainty Quantification and Sensitivity Analysis (PREPARED 2014.048) 

© PREPARED - 23 -                                                          15 april 2010 

 

Arguments: none 

Return[Data Member] 

 
double returnpar(int);   //returns par value at index  
   
double* returnparpointer();  //returns *par  
 
double* returnParMin();   //returns *parMax 
 
double* returnParMax();   //returns *parMin 
 
 
 
Description:  A family of functions to return data members or in some cases pointers to data 

members of this class to the function caller. 

 

Arguments: 

 
None. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Calibration, Uncertainty Quantification and Sensitivity Analysis (PREPARED 2014.048) 

© PREPARED - 24 -                                                          15 april 2010 

 

5.3 InformalLikelihoods class 

 
informalLikelihoods provides three informal likelihood functions to calculate posterior 
probabilities within the informal Bayesian framework. See Smith et al. (2008) for further 
information regarding these functions. A new object of this class should be created each time 
a different informal likelihood function is used. 
 

5.3.1 Data Members 

 

int tObs: total number of observations used in calibration 
 
double obsMean: mean of the observations vector 
 
double denom: the denominator used in the respective informal likelihood function 
 
double *observations [tObs]: store for observations used to calculate the informal 
likelihood 
 
double exp: exponent used to determine between different likelihood functions  
 
double numerator: the numerator for the specified likelihood function 
 

5.3.2 Member Functions 

 

initialiseNSE 

 
void initialiseNSE(double *OBSERVATIONS, int & TOBS, double EXP); 
 
Description: initialises the Nash-Sutcliffe Efficiency (NSE) based likelihood function when 

EXP = 2, and the Normalised Absolute Error (NAE) based likelihood when EXP = 1. 

 

Arguments: 

 
double *OBSERVATIONS: input to *observations 
 
int & TOBS: input to tObs 
 
double EXP: input to exp 
 
 
 
 

runNSE 

 
void runNSE(double *predictions, double & result); 



 

Calibration, Uncertainty Quantification and Sensitivity Analysis (PREPARED 2014.048) 

© PREPARED - 25 -                                                          15 april 2010 

 

 
Description: runs the NSE or NAE likelihood function, depending on the exponent set in 

initialiseNSE(). 

 

Arguments: 

 
double *predictions [tObs]: vector of model predictions 
 
double & result: return value of the likelihood 
 
 
 
 

initialiseNSSE 

 
void initialiseNSSE(double *OBSERVATIONS, int & TOBS); 
 
Description: initialises the Normalised Sum of Square Errors (NSSE) based likelihood 

function  

 

Arguments: 

 
double *OBSERVATIONS: input to *observations 
 
int & TOBS: input to tObs 
 
 

runNSSE 
 
void runNSSE(double *predictions, double & result); 
 
Description: runs the NSSE based likelihood function. 

 

Arguments: 

 
double *predictions [tObs]: vector of model predictions 
 
double & result: return value of the likelihood 
 
 
 
 
 
 
 



 

Calibration, Uncertainty Quantification and Sensitivity Analysis (PREPARED 2014.048) 

© PREPARED - 26 -                                                          15 april 2010 

 

5.4 informalBayesianAnalysis class 

 
informalBayesianAnalysis provides functions to run an informal Bayesian Analysis, 
calculate parameter uncertainty, parameter correlation, parameter sensitivity, sensitivity of 
calibration to the behavioural threshold chosen during calibration, and confidence intervals 
for observations used in calibration, and functions to output summary information to space 
delimited text files. 

5.4.1 Data Members 

 
int tSamples: total number of samples (parameter sets) used in posterior analysis 
 
int tObs: number of observations used in calibration  
 
int tPar: number of parameters in a parameter set 
 
int tThresh: number of sample (behavioural) thresholds used in analysis 
 
double **pars [tPar][tSamples]: store for each parameter set 
 
double *obs [tObs]: vector of observations 
 
double *like [tSamples]: store for likelihood associated with each parameter set 
 
double *parmax [tPar]: store for minimum value of uniform prior distributions for each 
parameter   
 
double *parmin [tPar]: store for maximum value of uniform prior distributions for each 
parameter  
  
double *thresholds [tThresh]: vector of decimal values denoting the fraction of the 
total number of retained runs that defines each behavioural threshold investigated 
 
double * mlePar [tPar]: vector storing the maximum likelihood parameter set 
 
double maxLike: maximum likelihood value 
 
double **pred [tObs][tSamples]: predictions associate with each observation from 
each parameter set (model run). 
 
int *parRank [tSamples]: stores the rank of each parameter set from maximum to 
minimum likelihood 
 
parameterAnalysis * pA  [tThresh]: vector of parameterAnalysis.h objects for each 
threshold  
 
predictionAnalysis *prA [tThresh]: vector of predictionAnalysis.h objects for 
eachthreshold  
 
double ci: confidence interval required for prediction bounds (decimal: e.g. 0.95 gives 
95% prediction bounds). 



 

Calibration, Uncertainty Quantification and Sensitivity Analysis (PREPARED 2014.048) 

© PREPARED - 27 -                                                          15 april 2010 

 

 

5.4.2 Member Functions 

 

initialise 
 
 

void initialise(double **PARS, double *LIKE, int TSAMPLES, int  TPAR, 
double *PARMIN, double * PARMAX, double **PRED, int & TOBS, double *Obs,  
double CI); 
 

Description: initialises pointers to arrays, and data storage for informal Bayesian analysis 

 

Arguments: 

 

double **PARS [tPar][tSamples]: pointer to initialise double **pars 

 

double *LIKE [tSamples]: pointer to initialise double *like 

 

int TSAMPLES: initialises tSamples. 

 

int TPAR: initialises tPar. 

 

double *PARMIN [tPar]: initialises double *parmin. 

 

double * PARMAX [tPar]: initialises double *parmax. 

 

double **PRED [tObs][tSamples]: initialises double **pred; 

 

int & OBSERVATIONS: initialises int observations. 

 

double *Obs [tObs]: vector of observations used in calibration. 

 

double CI: initialises double ci. 
 
 

runAnalysis 
 

void runAnalysis(int TTHRESH, double *thrs); 
 
 
Description: runs an informal Bayesian analysis 

 

Arguments: 

 

int TTHRESH: input to tThresh 

 



 

Calibration, Uncertainty Quantification and Sensitivity Analysis (PREPARED 2014.048) 

© PREPARED - 28 -                                                          15 april 2010 

 

double *thrs [tThresh]: vector of thresholds for use in informal Bayesian analysis. 

These need to be in the range (0-1], and specify a fraction of the total number of retained 

samples (tSamples). 

 
 

outputTables 
 

void outputTables(std::string filename); 
 
Description: produces a space delimited file containing output tables in different formats 

describing calibration results and model parameter sensitivity 

 

Arguments: 

 
std::string filename: a filename to where the table is stored 
 
 
 

outputPDFCDF 
 

void outputPDFCDF(std::string filename); 
 
Description: produces a space delimited file containing posterior PDFs and CDFs for all 

parameters, for each behavioural threshold  

 

Arguments: 

 
std::string filename: a filename to where the table is stored 
 
 

outputPredInt 
 
 

void outputPredInt(std::string filename); 
 
 
Description: outputs the informal Bayesian prediction intervals for each behavioural 

threshold specified.  

 

Arguments: 

 
std::string filename: a filename to where the table is stored 
 
 
 

sortPAR 
 

void sortPar(); 



 

Calibration, Uncertainty Quantification and Sensitivity Analysis (PREPARED 2014.048) 

© PREPARED - 29 -                                                          15 april 2010 

 

 
Description: sorts the parameters sets from largest likelihood to smallest  

 

Arguments: none. 
 
 

sortPred 
 

void sortPred(); 
 
Description: sorts the predictions sets from largest likelihood to smallest  

 

Arguments: none. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Calibration, Uncertainty Quantification and Sensitivity Analysis (PREPARED 2014.048) 

© PREPARED - 30 -                                                          15 april 2010 

 

5.5 formalLikelihoods class 

 
formalLikelihoods provides a Gaussian likelihood function for formal Bayesian Analysis, as 
well as capability to account for heteroscedastic errors by setting the error variance for each 
observation. A new object of this class should be created each time a different informal 
likelihood function is used. 
 

5.5.1 Data Members 

 
int tObs: number of observations used in calibration. 
 
double *observations [tObs]: vector of observations use in the likelihood function 
 
double *std [tObs]: vector of  standard deviations, one for each observation that can be 
used to account for Heteroscedasticity in the residuals. 
 
 

5.5.2 Member Functions 

 

 

initialise 
 

void initialise(double *OBSERVATIONS, int TOBS); 
 
Description: initialises a formalLikelihoods object.  

 

Arguments: 

 

double *OBSERVATIONS [tObs]: input to observations. 

 

int TOBS: input to tObs. 
 

 
 

negLogGaussLF 
 

void negLogGaussLF(double *predictions, double & result); 
 
Description:  calculates the negative log likelihood for a vector of predictions   

 

Arguments: 

 

double *predictions [tObs]: predictions used to calculate the negative log likelihood. 

 

double & result: return value of the negative log likelihood. 

 



 

Calibration, Uncertainty Quantification and Sensitivity Analysis (PREPARED 2014.048) 

© PREPARED - 31 -                                                          15 april 2010 

 

 

stat_sampGaussLF 
 

static void sampGaussLF(double *par, double & result); 
 
Description:  samples from the Gaussian likelihood function, for use in the 

predictionAnalysis class when calculating the prediction intervals.   

 

Arguments: 

 

double *par [1]: parameters used in the Gaussian likelihood function. In this case, a 

vector of dimension 1, containing the standard deviation of the Gaussian likelihood 

function. 

 

double & result: return value of the sample from the Gaussian distribution. 

 

 

sampGaussLF 
 

(*f1)(double *, double &) sampGaussLF(); 
 
Description:  returns a pointer to the stat_sampGaussLF function to the function caller. This 

is required by the runAnalysis function in the formalBayesianAnalysis class. 

 

Arguments: 

None. 

 
 

normLogProb 
 

void normLogProb(double *normprob, double *loglike, int tSamples); 
 
Description:  converts a vector of negative log likelihoods into a vector of normalised 

probabilities. 

 

Arguments: 

 

double *normprob [tSamples]: vector to return the normalised probabilities.  

 

double *loglike [tSamples]: vector of log likelihoods. 

 

int tSamples: number of samples 

 



 

Calibration, Uncertainty Quantification and Sensitivity Analysis (PREPARED 2014.048) 

© PREPARED - 32 -                                                          15 april 2010 

 

double *par [1]: parameters used in the Gaussian likelihood function. In this case, a 

vector of dimension 1, containing the standard deviation of the Gaussian likelihood 

function. 

 

 
 

setStd 
 

void setStd(double *predictions, double STD, double code); 
 
 
Description:  sets the standard deviation for each prediction for use in the negative log 

likelihood 

 

Arguments: 

 

double *predictions [tObs]: vector of model predictions associated with the vector of 
observations 
 
double STD: sampled standard deviation used in the Gaussian Likelihood, used as input 
to populate *std 
 
double code: set as zero for the same standard deviation for each prediction; set as one to 
set the standard deviation as the product of STD and the prediction value. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Calibration, Uncertainty Quantification and Sensitivity Analysis (PREPARED 2014.048) 

© PREPARED - 33 -                                                          15 april 2010 

 

5.6 formalBayesianAnalysis class 

 
formalBayesianAnalysis provides functions to run an informal Bayesian Analysis, calculate 
parameter uncertainty, parameter correlation, parameter sensitivity, and both confidence 
intervals for the model, and prediction intervals based on the chosen formal likelihood 
function applied. 
 

5.6.1 Data Members 

 
int tSamples: total number of samples retained from sampling for posterior analysis 
 
int tPar: number of parameters calibrated 
 
int tObs: number of observations used in calibration 
 
double **pars [tPar][tSamples]: store for each parameter set 
 
double *like [tSamples]: store for likelihood associated with each parameter set 
 
double *parmax [tPar]: store for minimum value of uniform prior distributions for each 
parameter   
 
double *parmin [tPar]: store for maximum value of uniform prior distributions for each 
parameter  
  
double *thresholds [tThresh]: vector of decimal values denoting the fraction of the 
total number of retained runs that defines each behavioural threshold investigated 
 
double * mlePar [tPar]: vector storing the maximum likelihood parameter set 
 
double maxLike: maximum likelihood value 
 
double **pred [tObs][tSamples]: predictions associate with each observation from 
each parameter set (model run). 
 
int *parRank [tSamples]: stores the rank of each parameter set from maximum to 
minimum likelihood 
 
parameterAnalysis * pA  [1]: vector of parameterAnalysis.h objects for each threshold  
 
predictionAnalysis *prC [1]: vector of predictionAnalysis.h objects for producing 
confidence intervals for each prediction 
 
predictionAnalysis *pr{ [1]: vector of predictionAnalysis.h objects for producing 
prediction intervals for each prediction 
 
double ci: confidence interval required for prediction bounds (decimal: e.g. 0.95 gives 
95% prediction bounds). 
 
double *obs [tObs]: vector of observations 



 

Calibration, Uncertainty Quantification and Sensitivity Analysis (PREPARED 2014.048) 

© PREPARED - 34 -                                                          15 april 2010 

 

 

5.6.2 Member Functions 

 
 
 

initialise 
 

void initialise(double **PARS, double *LIKE, int TSAMPLES, int  TPAR, 
double *PARMIN, double * PARMAX, double **PRED, double *OBS, int & TOBS, 
double CI); 
 
 
Description:  initialise a formal Bayesian analysis object. 

 

Arguments: 

 

double **PARS: input to pars 
 
double *LIKE: input to like 
 
int TSAMPLES: input to tSamples 
 
int  TPAR: input to tPar 
 
double *PARMIN: input to parmin 
 
double * PARMAX: input to parmax 
 
double **PRED: input to pred 
 
double *OBS: input to obs 
 
int & TOBS: input to tObs 
 
double CI: input to ci; 
 
 

runAnalysis 
 

void runAnalysis(void (*f)(double *,double & result),int errPar, int 
tErrSamp); 
 
 
Description:  runs the formal Bayesian analysis 

 

Arguments: 

 



 

Calibration, Uncertainty Quantification and Sensitivity Analysis (PREPARED 2014.048) 

© PREPARED - 35 -                                                          15 april 2010 

 

void (*f)(double *,double & result): function passed to runAnalysis to sample 
from the given likelihood function used (e.g. if the Gaussian likelihood is used, 
sampGaussLF is passed 
 
 
int errPar: the number of error model parameters. These parameters should be the last 
parameters in the parameter vector(s), passed to formalBayesAnalysis 
 
int tErrSamp: the total number of samples made from the assumed distribution to 
calculate the prediction intervals. 
 
 

outputTables 
 

void outputTables(std::string filename); 
 
 
Description:  output summary information, including optimal parameters, and sensitivity 

analysis 

 

Arguments: 

 

std::string filename: a filename (and extension) to where the file is to 

be stored. 

 
 

outputPDFCDF 
 

void outputPDFCDF(std::string filename); 
 
 
Description:  outputs the PDFs and CDFs for each parameter. 

 

Arguments: 

 

std::string filename: a filename (and extension) to where the file is to 

be stored. 

 
 

outputPredInt 
 

void outputPredInt(std::string filename); 
 
 
 
Description:  outputs the prediction intervals and confidence intervals for the observations 

 

Arguments: 



 

Calibration, Uncertainty Quantification and Sensitivity Analysis (PREPARED 2014.048) 

© PREPARED - 36 -                                                          15 april 2010 

 

 

std::string filename: a filename (and extension) to where the file is to 

be stored. 

 

sortPAR 
 

void sortPar(); 
 
Description: sorts the parameters sets from largest likelihood to smallest  

 

Arguments: none. 
 
 

sortPred 
 

void sortPred(); 
 
Description: sorts the predictions sets from largest likelihood to smallest  

 

Arguments: none. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Calibration, Uncertainty Quantification and Sensitivity Analysis (PREPARED 2014.048) 

© PREPARED - 37 -                                                          15 april 2010 

 

 
 

5.7 ParameterAnalysis class 

 
parameterAnalysis creates summary statistical information post calibration, including 
information on model sensitivity and parameter correlation.  
 

5.7.1 Data Members 

 
int bins: number of bins used to construct the parameter PDFs 
 
int tSamples: number of samples used to construct distributions 
 
int tPar: number of parameters 
 
int coeffs: total number of parameter interactions  
 
double **CDF [tPar][bins]: store for parameter CDFs 
 
double **PDF [tPar][bins]: store for parameter PDFs 
 
double **binCent [tPar][bins]: store for central parameter  
value associated with each bin in the CDFs and PDFs 
 
double *maxProb [tPar]: maximum probability parameter set 
 
double *meanProb [tPar]: mean probability parameter set 
 
double *stdProb [tPar]: parameter standard deviation  
 
double *cdfDiff [tPar]: store for normalised aerial differences between posterior CDF 
and prior uniform CDF  
 
double *parMin [tPar]: minimum range of prior uniform distribution 
 
double *parMax [tPar]: maximum range of prior uniform distribution 
 
double *corrCoeff [coeffs]: store for correlation coefficients between parameters 
 
int *pc1 [coeffs]; store of first parameter index associated with correlation coefficients 
 
int *pc2 [coeffs]; store of second parameter index associated with correlation 
coefficients 
 
 

5.7.2 Member Functions 

 

runAnalysis 



 

Calibration, Uncertainty Quantification and Sensitivity Analysis (PREPARED 2014.048) 

© PREPARED - 38 -                                                          15 april 2010 

 

 
void runAnalysis(double **par, double *prob, int & TSAMPLES, int & TPAR, 
double * parmin, double * parmax, int BINS){ 
 
Description: runs a parameter analysis for a supplied sample of parameters and 

probabilities, calculating posterior PDFs and CDFs, parameter correlation coefficients and 

related summary information 

 

Arguments: 

 
double **par [tPar][tSamples]: array of parameters used in analysis 
 
double *prob [tSamples]: array of probabilities associated with each parameter set. 
 
int & TSAMPLES: entry to tSamples. 
 
int & TPAR: number of parameters within each parameter set 
 
double * parmin: vector of minimum values for the uniform prior distributions for each 
model parameter.  
 
double * parmax: vector of maximum values for the uniform prior distributions for each 
model parameter.  
 
int & BINS: number of bins used to create the PDFs and CDFs, controls how well 
resolved the parameter range is resolved 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Calibration, Uncertainty Quantification and Sensitivity Analysis (PREPARED 2014.048) 

© PREPARED - 39 -                                                          15 april 2010 

 

 
 

5.8 PredictionAnalysis class 

 
predictionAnalysis calculates probability distributions, cumulative distribution functions 
and confidence intervals for those data used in calibration.  

5.8.1 Data Members 

 
int tObs: the number of observations used in calibration 
 
int tSamples: the number of samples and therefore predictions at each observation point 
point used to construct the confidence intervals  
 
double *ciU [tObs]: the upper confidence interval for an observation  
 
double *ciL [tObs]: the lower confidence interval for an observation 
 
int bins: the number of bins used to construct the PDF and CDF 
 
double **PDF [tObs][bins]: store for the PDF of each observation 
 
double **CDF [tObs][bins]: store for the CDF of each observation 
 
double **binCent [tObs][bins]: store for the values associated with the centre of each 
bin used to construct the PDFs and CDFs 
 
double *predMin [tObs]: store for minimum prediction for each observation 
 
double *predMax [tObs]: store for maximum prediction for each observation 
 

5.8.2 Member Functions 

 

 

initialise 
 
initialise(double **PRED, double * PROB, int & TSAMPLES, int & TOBS){ 
 
 
Description: initialises a predictionAnalysis object. Must be called prior to runAnalysis 

 

Arguments: 

 

double **PRED:  

 

 

double * PROB, int & TSAMPLES, int & TOBS 



 

Calibration, Uncertainty Quantification and Sensitivity Analysis (PREPARED 2014.048) 

© PREPARED - 40 -                                                          15 april 2010 

 

 
 
 

runAnalysis 
 
 
runAnalysis(double **pred, double * prob, int & LENGTH, int & TOBS, double & CI, int 
BINS); 

 
Description: runs a predictions analysis for a supplied sample of predictions and 

probabilities, calculating posterior PDFs and CDFs, and confidence intervals. 

 

Arguments: 

 

double **pred [observations][length]: observations used to calculate the predictions intervals 

 

double * prob [length]: probabilities associated with the predictions 

 

int & LENGTH: input to int length 
 

int & TOBS: input to int tObs 
 

double & CI: required confidence interval percentage (decimal: e.g. 0.95 for 95% confidence intervals) 

 

int BINS: input to int bins 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Calibration, Uncertainty Quantification and Sensitivity Analysis (PREPARED 2014.048) 

© PREPARED - 41 -                                                          15 april 2010 

 

 

5.9 genericFunctions class 

 

The generic functions class provides a series of generic algorithms utilised in both Formal 

and Informal Bayesian Analysis. The class has no data members; rather all data is passed by 

reference to the member functions of genericFunctions.h. 

 

5.9.1 Member Functions 

 

MAE 
 

void MAE(double *vector1, double * vector2, int & vectorlength, double & 

result); 

 

Description: Calculates the mean absolute error between two vectors of numbers 

 

Arguments: 

 

double *vector1: first vector of numbers 

  

double * vector2: second vector of numbers 

 

int & vectorlength: length of vector1 and vector2 

 

double & result: mean absolute error stored 

 

 

bubbleSort 

 
void bubbleSort(double *values, int length); 

 
Description: sorts a vector of values from largest to smallest 

 

Arguments: 

 
double *values: vector of numbers. 

 

int length: length of vector to be sorted. 
 

 



 

Calibration, Uncertainty Quantification and Sensitivity Analysis (PREPARED 2014.048) 

© PREPARED - 42 -                                                          15 april 2010 

 

bubbleSortRank 

 
void bubbleSortRank(double *values, int *rank, int length); 

 
Description: stores in "rank" the vector indexes of the vector “values” from highest to 

lowest. E.g. if rank[0] = 63, then value[63] is the largest in the vector “values”. 

 

Arguments: 

 
double *values: vector of numbers. 

 

int *rank: vector where the rank is stored of the highest value in “values”. 

 

int length: length of vector to be sorted. 
 
 
Normalise 
 
void normalise(double *values, double *norms, int length); 

 
Description: normalises the vector “values” and stores the result in vector “norms” 

 

Arguments: 

 

double *values: vector of numbers. 

 

double *norms: vector where the normalised vector “values” are stored 

 

int length: length of vector to be sorted 
 

 

probDist 

 
void probDist(double *par, double * prob, int & length, double & min, 
double & max, int & bins, double *PDF, double * binCent); 

 
Description: computes the probability density function (PDF) of a vector of values using an 

associated vector of probabilities. 

 



 

Calibration, Uncertainty Quantification and Sensitivity Analysis (PREPARED 2014.048) 

© PREPARED - 43 -                                                          15 april 2010 

 

Arguments: 

 
double *par: vector of values for which the PDF is calculated. 
 
double * prob: vector of probabilities associated with the values in “par”. 
 
int & length: length of input vectors 
 
double & min: minimum value of par used to construct the PDF bins 
 
double & max: maximum value of par used to construct the PDF bins 
 
int & bins: number of bins used to construct the PDF 
 
double *PDF: probability associated with each bin. The vector is of length “bins”. 
 
double * binCent: vector storing the central values of each bin, derived from “par”. The 
vector is of length “bins”. 
 
 

cumDist 
 
void cumDist(double *PDF, int & bins, double * CDF); 
 
Description: computes the cumulative probability density function (CDF) from a probability 

density function, which may be derived from probDist(). 

 

Arguments: 

 
double *PDF: vector of probabilities 
 
int & bins: length of vector of probabilities 
 
double * CDF: vector storing the cumulative probabilities 
 
 

CDFDiff 
 
void CDFDiff(double *CDF, double *binCent, int & bins, double & area, 
double &parmin, double &parmax); 

 
Description: calculates the normalised difference in area between two cumulative 

distribution functions.  

 

Arguments: 

 

double *CDF: cumulative distribution probabilities 



 

Calibration, Uncertainty Quantification and Sensitivity Analysis (PREPARED 2014.048) 

© PREPARED - 44 -                                                          15 april 2010 

 

 

double *binCent: central values of each bin associated with the vector of cumulative 

probabilities. 

 

int & bins: length of input vectors 

 

double & maxDiff: return value for the maximum difference 

 

double &parmin: minimum value, which alongside “parmax” is used to calculate the 

uniform prior distribution. 

 

double &parmax: minimum value, which alongside “parmax” is used to calculate the 

uniform prior distribution. 

 

 

coeffDeterm 
 
void coeffDeterm(double *p1, double * p2, int &length, double & R2); 

 
Description: computes the coefficient of determination between two vectors; e.g. the square 

of the Pearson’s product moment correlation coefficient 

 

Arguments: 

 

double *p1: first vector of values 
 
 
double * p2: second vector of values 
 
int &length: length of input vectors 
 
 double & R2: value where the coefficient of determination is returned from the function. 
 
 

Max 
 
void max(double *p1, int & length, double & maxVal, int & rank); 

 
Description: computes the maximum value within a vector of numbers 

 

Arguments: 

 

double *p1: input vector of values 
 
int & length: length of the input vector 



 

Calibration, Uncertainty Quantification and Sensitivity Analysis (PREPARED 2014.048) 

© PREPARED - 45 -                                                          15 april 2010 

 

 
double & maxVal: value where the maximum value of the input vector is returned from 
the function. 
 
int & rank: value where the index of the maximum value within the input vector is 
returned from the function. 
 
 

Min 
 
void min(double *p1, int & length, double & maxVal, int & rank); 

 
Description: computes the minimum value within a vector of numbers 

 

Arguments: 

 

double *p1: input vector of values 
 
int & length: length of the input vector 
 
double & maxVal: value where the minimum value of the input vector is returned from 
the function. 
 
int & rank: value where the index of the minimum value within the input vector is 
returned from the function. 
 
 

initialiseRand 

 

void initialiseRand(); 
 

Description: initialises the random number generator using the computer clock. 

 

Arguments: none. 

 
 
 

confInt 

 

void confInt(double *bin, double *CDF, int & length, double & ciL, double 
& ciU, double & ci); 
 

Description: computes the confidence interval of a given percentage for a vector of values 

and associated cumulative probabilities 

 

Arguments: 



 

Calibration, Uncertainty Quantification and Sensitivity Analysis (PREPARED 2014.048) 

© PREPARED - 46 -                                                          15 april 2010 

 

 

double *bin: input vector of values 
 
double *CDF: cumulative probability associated with the input vector 
 
int & length: length of the input vectors  
 
double & ciL: value where the lower confidence interval is returned from the function 
 
double & ciU: value where the upper confidence interval is returned from the function 
 
double & ci: value where the required confidence interval is input to the function, which 
must be entered as a decimal: e.g. enter 0.95 for the 95%confidence interval. 
 

 

sampleNormDist 

 

sampleNormDist(double variance, double & result); 
 

Description: generates a random number from a normal distribution, using the Box-Muller 

method. 

 

Arguments: 

 
double variance: required variance of the distribution from which to sample 

 

 

double & result: value to which the resultant sample is added. Set as zero for the initial 

sample 

 

 

calcMean 
 
calcMean(double *vect1, int &length, double & mean); 
 
 
Description: calculates the mean of a vector of numbers. 

 

Arguments: 

 

double *vect1: vector of numbers 

 

int &length: length of vector of numbers 

 

double & mean: return value for the mean 

 



 

Calibration, Uncertainty Quantification and Sensitivity Analysis (PREPARED 2014.048) 

© PREPARED - 47 -                                                          15 april 2010 

 

calcStd 
 
calcStd(double *vect1, int &length, double &std); 
 

Description: calculates the standard deviation of a vector of numbers. 

 

Arguments: 

 

double *vect1: vector of numbers 

 

int &length: length of vector of numbers 

 

double &std: return value for the standard deviation 

 
 

randInt 
 
void randInt(double lower, double upper, double & result); 
 

Description: calculates a random number over an interval. 

 

Arguments: 

 

double lower: lower bound of the interval. 

 

double upper: upper bound of the interval. 

 

double & result: return value of the result. 

 

 

perturbKernSmooth 
 
void perturbKernSmooth(double *vect1, int length, double dirac); 
 
 

Description: randomly perturbs a vector of values whilst maintaining the same mean and 

standard deviation of the original vector. 

 

Arguments: 

 

double *vect1 [length]: vector of values to perturb 

 

int length: length of the vector 

 



 

Calibration, Uncertainty Quantification and Sensitivity Analysis (PREPARED 2014.048) 

© PREPARED - 48 -                                                          15 april 2010 

 

double dirac: factor that determines the strength of the perturbation  

 

 

5.10 Additional functionality in all classes 

 
 

destroy 
 
void destroy(); 
 

Description:  Deletes the class object, and releases memory that was dynamically allocated 

during its operation. 

 

Arguments: 

 

None. 

 



 

Calibration, Uncertainty Quantification and Sensitivity Analysis (PREPARED 2014.048) 

© PREPARED - 49 -                                                          15 april 2010 

 

6 Software Installation  

The software toolkit consists of a precompiled dynamic library (.dll) containing the 
functionality for the Model Calibration class. These data objects will be called upon from 
within the user’s C++ environment when implementing a solution. 
 
An import library (.lib) and header file (.h) are provided for ease of use. These must be made 
available to the C++ compiler. The header file contains purely abstract classes and virtual 
functions which refer to machine code within the precompiled library (.dll). An example 
using the calibration toolkit from a user perspective in Visual Studio 2010 is provided in 
subsection 6.1.  
 

6.1 Example installation using the import library 

 
Create a new console application with default settings and copy the import library 
“CALIBRATION_TOOLBOX_DLL_GEN.lib” and the header file “calibrationToolbox.h” to 
the working directory. Add the import library to the “Additional Dependencies” field under 
Configuration Properties->Linker->Input in the project properties menu. Add the header file 
to the project by right clicking on header files and selecting Add->Existing Item from the 
menu. 
 

 
 

Figure 9. Linker Properies 

 

Copy the dynamic library “CALIBRATION_TOOLBOX_DLL_GEN.dll” to the debug and 
release directories that were created automatically by the project wizard. This file must 
always be present in the same directory as the executable file at runtime.  
 
 
 



 

Calibration, Uncertainty Quantification and Sensitivity Analysis (PREPARED 2014.048) 

© PREPARED - 50 -                                                          15 april 2010 

 

6.2 Example installation by explicit methods 

 
 
To load the dynamic library at runtime, the header file “calibrationToolbox.h” containing 
the abstract classes and virtual functions should be included in the project. It is then 
necessary to load the eight factory functions, which will provide pointers to each of the eight 
classes as they are created at runtime. The eight functions are defined in the header file. 
 

IgenericFunctions* getGeneric(); 
ImcSampling* getMcSampling(); 
IPfSampling* getMcSampling(); 
IformalLikelihoods* getFormalLike(); 
IinformalLikelihoods* getInformalLike(); 
IformalBayes* getFormalBayes(); 
IinformalBayes*  getInformalBayes(); 
ImodelCalibration* getModelCalibration(); 
 

Each factory function returns a pointer to a class defined in the interface (in 
“calibrationToolbox.h”). An example of dynamic loading is given in figure 10. 
 
 

 
Figure 10. Dynamic loading 



 

Calibration, Uncertainty Quantification and Sensitivity Analysis (PREPARED 2014.048) 

© PREPARED - 51 -                                                          15 april 2010 

 

7 References 

Hutton, C.J., Kapelan, Z., Vamvakeridou-Lyroudia, L., Savic, D. (2012) Dealing with 
Uncertainty in Water Distribution Systems' Models: a Framework for Real-Time Modeling 
and Data Assimilation. Journal of Water Resources Planning and Management, 
http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29WR.1943-5452.0000325 
 

 

http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29WR.1943-5452.0000325

